Copied to
clipboard

G = C22×Q32order 128 = 27

Direct product of C22 and Q32

direct product, p-group, metabelian, nilpotent (class 4), monomial

Aliases: C22×Q32, C8.11C24, C23.65D8, C16.12C23, Q16.1C23, C4.23(C2×D8), (C2×C4).96D8, C8.56(C2×D4), (C2×C8).264D4, C4.17(C22×D4), C2.26(C22×D8), C22.77(C2×D8), (C22×C16).12C2, (C2×C8).573C23, (C2×C16).91C22, (C22×C4).623D4, (C22×Q16).10C2, (C22×C8).543C22, (C2×Q16).146C22, (C2×C4).874(C2×D4), SmallGroup(128,2142)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C22×Q32
C1C2C4C8C2×C8C22×C8C22×Q16 — C22×Q32
C1C2C4C8 — C22×Q32
C1C23C22×C4C22×C8 — C22×Q32
C1C2C2C2C2C4C4C8 — C22×Q32

Generators and relations for C22×Q32
 G = < a,b,c,d | a2=b2=c16=1, d2=c8, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 340 in 180 conjugacy classes, 100 normal (9 characteristic)
C1, C2, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C2×C8, Q16, Q16, C22×C4, C22×C4, C2×Q8, C2×C16, Q32, C22×C8, C2×Q16, C2×Q16, C22×Q8, C22×C16, C2×Q32, C22×Q16, C22×Q32
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C24, Q32, C2×D8, C22×D4, C2×Q32, C22×D8, C22×Q32

Smallest permutation representation of C22×Q32
Regular action on 128 points
Generators in S128
(1 121)(2 122)(3 123)(4 124)(5 125)(6 126)(7 127)(8 128)(9 113)(10 114)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 89)(58 90)(59 91)(60 92)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 99)(68 100)(69 101)(70 102)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)
(1 92)(2 93)(3 94)(4 95)(5 96)(6 81)(7 82)(8 83)(9 84)(10 85)(11 86)(12 87)(13 88)(14 89)(15 90)(16 91)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 105)(24 106)(25 107)(26 108)(27 109)(28 110)(29 111)(30 112)(31 97)(32 98)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 126)(50 127)(51 128)(52 113)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 121)(61 122)(62 123)(63 124)(64 125)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 28 9 20)(2 27 10 19)(3 26 11 18)(4 25 12 17)(5 24 13 32)(6 23 14 31)(7 22 15 30)(8 21 16 29)(33 118 41 126)(34 117 42 125)(35 116 43 124)(36 115 44 123)(37 114 45 122)(38 113 46 121)(39 128 47 120)(40 127 48 119)(49 73 57 65)(50 72 58 80)(51 71 59 79)(52 70 60 78)(53 69 61 77)(54 68 62 76)(55 67 63 75)(56 66 64 74)(81 105 89 97)(82 104 90 112)(83 103 91 111)(84 102 92 110)(85 101 93 109)(86 100 94 108)(87 99 95 107)(88 98 96 106)

G:=sub<Sym(128)| (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,92)(2,93)(3,94)(4,95)(5,96)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,111)(30,112)(31,97)(32,98)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,126)(50,127)(51,128)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,28,9,20)(2,27,10,19)(3,26,11,18)(4,25,12,17)(5,24,13,32)(6,23,14,31)(7,22,15,30)(8,21,16,29)(33,118,41,126)(34,117,42,125)(35,116,43,124)(36,115,44,123)(37,114,45,122)(38,113,46,121)(39,128,47,120)(40,127,48,119)(49,73,57,65)(50,72,58,80)(51,71,59,79)(52,70,60,78)(53,69,61,77)(54,68,62,76)(55,67,63,75)(56,66,64,74)(81,105,89,97)(82,104,90,112)(83,103,91,111)(84,102,92,110)(85,101,93,109)(86,100,94,108)(87,99,95,107)(88,98,96,106)>;

G:=Group( (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,101)(70,102)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112), (1,92)(2,93)(3,94)(4,95)(5,96)(6,81)(7,82)(8,83)(9,84)(10,85)(11,86)(12,87)(13,88)(14,89)(15,90)(16,91)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,105)(24,106)(25,107)(26,108)(27,109)(28,110)(29,111)(30,112)(31,97)(32,98)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,126)(50,127)(51,128)(52,113)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,28,9,20)(2,27,10,19)(3,26,11,18)(4,25,12,17)(5,24,13,32)(6,23,14,31)(7,22,15,30)(8,21,16,29)(33,118,41,126)(34,117,42,125)(35,116,43,124)(36,115,44,123)(37,114,45,122)(38,113,46,121)(39,128,47,120)(40,127,48,119)(49,73,57,65)(50,72,58,80)(51,71,59,79)(52,70,60,78)(53,69,61,77)(54,68,62,76)(55,67,63,75)(56,66,64,74)(81,105,89,97)(82,104,90,112)(83,103,91,111)(84,102,92,110)(85,101,93,109)(86,100,94,108)(87,99,95,107)(88,98,96,106) );

G=PermutationGroup([[(1,121),(2,122),(3,123),(4,124),(5,125),(6,126),(7,127),(8,128),(9,113),(10,114),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,89),(58,90),(59,91),(60,92),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,99),(68,100),(69,101),(70,102),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112)], [(1,92),(2,93),(3,94),(4,95),(5,96),(6,81),(7,82),(8,83),(9,84),(10,85),(11,86),(12,87),(13,88),(14,89),(15,90),(16,91),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,105),(24,106),(25,107),(26,108),(27,109),(28,110),(29,111),(30,112),(31,97),(32,98),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,126),(50,127),(51,128),(52,113),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,121),(61,122),(62,123),(63,124),(64,125)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,28,9,20),(2,27,10,19),(3,26,11,18),(4,25,12,17),(5,24,13,32),(6,23,14,31),(7,22,15,30),(8,21,16,29),(33,118,41,126),(34,117,42,125),(35,116,43,124),(36,115,44,123),(37,114,45,122),(38,113,46,121),(39,128,47,120),(40,127,48,119),(49,73,57,65),(50,72,58,80),(51,71,59,79),(52,70,60,78),(53,69,61,77),(54,68,62,76),(55,67,63,75),(56,66,64,74),(81,105,89,97),(82,104,90,112),(83,103,91,111),(84,102,92,110),(85,101,93,109),(86,100,94,108),(87,99,95,107),(88,98,96,106)]])

44 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4L8A···8H16A···16P
order12···244444···48···816···16
size11···122228···82···22···2

44 irreducible representations

dim111122222
type++++++++-
imageC1C2C2C2D4D4D8D8Q32
kernelC22×Q32C22×C16C2×Q32C22×Q16C2×C8C22×C4C2×C4C23C22
# reps11122316216

Matrix representation of C22×Q32 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
00001
,
10000
0161100
06100
000712
000112
,
10000
001600
016000
000710
0001210

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,6,0,0,0,11,1,0,0,0,0,0,7,11,0,0,0,12,2],[1,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,7,12,0,0,0,10,10] >;

C22×Q32 in GAP, Magma, Sage, TeX

C_2^2\times Q_{32}
% in TeX

G:=Group("C2^2xQ32");
// GroupNames label

G:=SmallGroup(128,2142);
// by ID

G=gap.SmallGroup(128,2142);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,-2,-2,448,253,456,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^16=1,d^2=c^8,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽